Technical Annex

Building a Nature-Positive Energy Transformation

Why a Low-Carbon Economy is Better for People and Nature

wwf.earth/energy-nature

November 2023

Technical Annex

- A1. Further details on selected scenarios
- A2. Land and marine footprints
- A3. Transmission & distribution infrastructure impact
- A4. Biomass sensitivity analysis
- A5. Mining impact
- A6. Energy sources' impact on species
- A7. Socioeconomic metrics
- A8. Selected tools & databases to facilitate a nature-positive energy transformation

A1. Further details on selected scenarios

The rapid transition scenario represents a <1.5 °C world with significantly less emissions, energy demand, and fossil fuels

1. Includes wind, solar, geothermal, hydro and biomass 2. Includes coal, gas and oil; GHG = greenhouse gas; EJ/ = exajoule; GtCO2e = gigatons of CO2 equivalent. Source: IPCC AR6; BCG analysis

The two scenarios have very different energy mixes and levels of electrification

Primary Energy	Scenario A: Rapio	d Transition (2050)	Scenario B: Business	Scenario B: Business as Usual (BAU) (2050)		
Source	Supply (EJ/yr)	% of total	Supply (EJ/yr)	% of total		
Solar	211	41%	26	3%		
Onshore wind	73	14%	20	3%		
Offshore wind	16	3%	2	<1%		
Hydro	24	5%	15	2%		
Geothermal	9	2%	1	<1%		
Biomass	98	19%	68	8%		
Oil	45	9%	197	24%		
Gas	30	6%	251	31%		
Coal	2	<1%	211	26%		
Nuclear	4	1%	13	2%		
Total primary energy	511	100%	805	100%		

Electrification	Scenario A: Rapid Transition (2050)	Scenario B: Business as Usual (BAU) (2050)
Electricity generation capacity (TW)	52	13
Electricity for freight transportation (EJ/yr)	15	5
Electricity for passenger transportation (EJ/yr)	37	6

A2. Land and marine footprints

Biomass and wind have the biggest area footprints over the lifecycle

Deep dives in following pages

1. Corresponds to land or ocean, depending on the technology; 2. "Direct" impact is the footprint associated with the installation, operation and maintenance of the power plant facility; 3. "Upstream" impact is the footprint associated with upstream value chain processes and activities, including the extraction and purification of raw material and manufacturing of components (end of-life land and water footprint negligible for all technologies assessed here); 4. Oil intensity assumed to be similar to gas given the intertwined value chains and limited literature on the distinction Source: IEA, EIA, NREL, EPRI, UNEC, DOE, Expert Interviews, BCG analysis

Among energy sources, biomass requires far more water than others

Deep dives in following pages

"Direct" impact is the footprint associated with the installation, operation and maintenance of the power plant facility; 2. "Upstream" impact is the footprint associated with upstream value chain processes and activities, including the extraction and purification of raw material and manufacturing of components (end of-life land and water footprint negligible for all technologies assessed here);
 Oil intensity assumed to be similar to gas given the intertwined value chains and limited literature on the distinction; Source: IEA, EIA, NREL, EPRI, UNEC, DOE, Expert Interviews, BCG analysis

Solar power's impact on nature arises from upstream and downstream segments of the value chain

Technology

The impact on nature from mining depends on the raw material used in the PV modules (Silicon photovoltaics is the dominant technology today with a market share of about 95%¹)

Installation type

Rooftop solar (typically residential) has a far smaller land footprint over its lifecycle compared to ground-mounted solar (typically utility scale)

A higher capacity factor reduces the impact on nature (arising from land and marine footprints) per megawatt-hour of electricity generated

1. Crystalline Si PV assumed as the default technology in this analysis given the small share of other technologies (e.g., Cadmium telluride thin films) in the market today; 2. Dx = Distribution; 3. Tx = Transmission; Source: Wood Mackenzie; BCG Analysis

Ground solar has a far bigger land footprint over its lifecycle than rooftop

Key insights

1. Averaged across fixed, single and dual axis solar configuration types, assuming Crystalline Si as the default technology 2. Includes small scale (1-20MW) as well as large scale (>20MW) solar project data, land use requirements for small PV projects were found to be similar to large PV projects (within 5% difference); 3. Assumes 30% solar rooftop share and 70% groundinstalled; Source: EPRI, IEA, UN Energy Commission, DOE, Expert interviews, BCG analysis

Lifecycle water withdrawals for solar PV are about 50 liters per MWh and mainly arise from component manufacturing

1. "Withdrawal" refers to water removed from the ground or diverted from a surface-water source for use, and "Consumption" refers to the portion of withdrawn water not returned to the environment; 2. Reference studies assumed the same consumption as withdrawal volume for downstream (i.e., plant operation) due to lack of more granular data; Source: NREL; Meldrum et. al ("Lifecycle Life cycle water use for electricity generation: a review and harmonization of literature estimates"); Jin et al. ("Water use of electricity technologies: A global meta-analysis"), Expert interviews, BCG analysis

Wind power's impact on nature can be mitigated using careful site management and better capacity factors

Value chain

Description

The mining and processing of metals and raw materials – mainly steel (which accounts for 70-80% of the weight of a turbine), but also aluminum, copper, fiberglass/plastics and rare earth elements

Upstream (indirect) impact

The manufacturing of wind turbine components including the tower, transformer, gearbox, shaft, nacelle, rotor hub and rotor blades

Installation and connection to grid

Site construction and installation of the turbine as well as supporting components, including power lines to connect to the electricity grid (Dx¹ or Tx²)

Direct (downstream) impact

All operations and maintenance activities that support power generation and transmission at the wind farm

Key parameters affecting wind power's impact on nature

Site management

Turbines and other equipment typically occupy less than 5% of the wind farm area (both for offshore and onshore). Wind's impact on nature can be reduced by carefully managing unused space to preserve habitats and/or repurposing this space for other uses, such as agriculture.

Capacity factor (CF)

A higher capacity factor reduces the impact on nature per MWh of power generated. Capacity factors can be improved by deploying newer turbine technology and selecting sites with higher wind potential

Wind turbines and equipment occupy just a small part of wind farms due to spacing

Lifecycle water withdrawals for wind power are about 7 Liters per MWh, driven by upstream activities

1. "Withdrawal" refers to water removed from the ground or diverted from a surface-water source for use, and "Consumption" refers to the portion of withdrawn water not returned to the environment; 2. Reference studies assumed the same consumption as withdrawal volume for downstream (i.e., plant operation) due to lack of more granular data; Source: NREL; Meldrum et. al ("Lifecycle Life cycle water use for electricity generation: a review and harmonization of literature estimates"); Jin et al. ("Water use of electricity technologies: A global meta-analysis"), Expert interviews, BCG analysis

Offshore wind has a smaller role to play than onshore, but has a bigger impact on nature

Key insights:

- Overall, offshore wind energy production has a much smaller role to play than onshore in both scenarios, requiring far less land
- In a rapid transition scenario, the offshore area required for direct activities (wind farms) is three times greater than in a BAU scenario as a percentage of the total..
- The negative impacts on nature are greater with offshore wind power, in both scenarios, reinforcing the need for careful planning to reduce impacts through siting and environmental management

Indirect land loss could be up to two times greater in a BAU scenario due to climate change effects

Indirect land loss due to climate change-related impacts (Mil sq.km)

1. Weighted average of 3°C and 4°C to get burned area (BA) projection for a 3.2°C BAU world 2. Global mean burn area (BA) calculated from projections in increased mean frequency of extreme fire weather, measured in days per year, under 1.5°C and 3.2°C scenarios; Source: Spinoni et al. 2021 "How will the progressive global increase of arid areas affect population and land-use in the 21st century?"; Jones et al. 2022 "Global and Regional Trends and Drivers of Fire Under Climate Change"; Brown et al. 2018 "Quantifying Land and People Exposed to Sea-Level Rise with No Mitigation and 1.5°C and 2.0°C Rise in Global Temperatures to Year 2300"; Kulp & Strauss 2019 "New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding"; UNCCP; BCG analysis

15

A3. Transmission & distribution infrastructure impact

Grid expansion requires a relatively small land area, but it can still pose significant risks to habitats

The estimated land area required globally by 2050 for wind and solar power generation and for additional transmission and distribution lines in a rapid transition scenario

- Elevated risk of electrocution (especially for birds)
- Elevated risk of natural disasters and wildfires

Negative impacts can be mitigated by rigorous siting and permitting criteria and burying transmission lines underground

Notes: 1. Equal to ~2x the total length of US transmission lines today 2. Equal to ~1.3x the total length of US distribution ¹⁷ lines today; Source: IEA, IPCC, BCG analysis

A4. Biomass sensitivity analysis

Despite requiring a large amount of land, biomass is projected to be a significant part of a 1.5°C future

Both IPCC and IEA climate-positive scenarios predict about 19% of energy globally will come from biomass by 2050

Total primary energy supply in 2050 (EJ/y)

Biomass will likely represent a large share of the energy mix in Latin America, Africa and North America, driven by availability and cost

Biomass as % of primary energy mix in 2050 (IPCC <1.5°C pathways)

1. Based on the IPCC C1 Shifted Pathways (SP) Illustrative Mitigation Pathway (IMP) 2. Traditional biomass is un-processed biomass used directly for heating (e.g., wood stoves) 3. Modern biomass includes all forms of manufactured bioenergy (purpose-grown/collected biomass) 4. Includes all countries in Asia Pacific, except China and India (shown separately); Source: IPCC AR6; IEA; BCG analysis

Shifting biomass demand to wind or solar, and using crops with a higher energy yield, can significantly improve land use

Case study: Estimated land area saved in Africa and Latin America by 2050 (Mil sq.km)

•		% improvement	in crop energy yi	eld per unit area	I ———
Africa	2%	4%	6%	8%	10%
1%	0.06	0.08	0.11	0.13	0.15
2%	0.10	0.12	0.15	0.17	0.19
3%	0.14	0.16	0.18	0.21	0.23
4%	0.18	0.20	0.22	0.25	0.27
5%	0.22	0.24	0.26	0.29	0.31
Latin America	2%	4%	6%	8%	10%
1%	0.11	0.16	0.21	0.27	0.32
2%	0.17	0.22	0.27	0.33	0.38
3%	0.23	0.28	0.33	0.38	0.44
4%	0.29	0.34	0.39	0.44	0.49
5%	0.35	0.40	0.45	0.50	0.55

By 2050, if 5% of the total energy demand was shifted from biomass to wind or solar and the energy yield of biomass crops was improved by 10%:

- 300,000 sq.km of land could be saved in Africa (equal to ~1% of Africa's total land area, or 30% of Egypt's land area)
- 550,000 sq.km land could be saved in Latin America (equal to ~2% of LATAM's total land area, or 6% of Brazil's land area)

Selecting biomass feedstocks based on energy yield can reduce the amount of land required

Notes: 1. The annual average cultivation productivity yield of algae in 2020 was 18.4g/m2/day, equivalent to ~67,000kg/ha/year; 2. Production yield per area input not available. Input estimated based on US municipal solid waste production compared to total urban land area; 3. Shell, BP, ExxonMobile ended green algae biofuel investments in 2023, citing commercial and biological limitations; Source: US DoE; Oak Ridge National Laboratory; NREL 2020 "Algal Biomass Production via Open Pond Algae Farm Cultivation"; The World Bank; BCG analysis

A5. Mining impact

In a rapid transition scenario, mining will make up a small part of the lifecycle land footprint of wind and solar

Land for mining will represent a small portion of the lifecycle land footprint of wind and solar

Estimated land required for wind and solar in 2050 in a <1.5 ^oC scenario

Metals for the energy transition will make up only about 5% of global metals production in 2050

Estimated mining production in 2050 in a rapid transition scenario (Mil

The supply of key energy transition materials is dominated by a handful of nations today

Material Ranked	Demand by 205 Energy transition ^{1.2.3}	50 (Mt/yr) _{Total}	SI	hare of g	lobal s	upply	v today (%)						
Iron	116 (4%)	3,100	*	Australia	37%		Brazil	19%	*)	China	14%	Other	30%
Graphite	19 (66%)	28	*)	China	59%	>	Mozambique	11%		Brazil	8%	Other	21%
Aluminum	15 (10%)	155	*)	China	56%	۲	China	6%		Russia	6%	Other	32%
Copper	9 (21%)	43	*	Chile	29%	٢	Peru	11%	*)	China	8%	Other	52%
Lithium	7 (70%)	10	*	Australia	51%	*	Chile	27%	*)	China	11%	Other	11%
Nickel	3 (50%)	6		Indonesia	a 31%		Philippines	13%		Russia	11%	Other	45%
Zinc	2 (8%)	24	*1	China	33%	٢	Peru	11%	*	Australia	10%	Other	46%
Silicon	2 (16%)	12	*1	China	70%		Russia	7%		Brazil	5%	Other	18%
Manganese	1 (3%)	32		South Africa	28%	*	Australia	18%		Gabor	15%	Other	39%
Cobalt	<1 (<30%)	3	>	Congo D.R.	69%		Rushia	5%	*	Australia	4%	Other	22%
Chromium	<1 (<2%)	50		South Africa	40%		Kazakhstan	17%	C*	Turkey	15%	Other	28%
Rare earth elements ^{4,5}	0.05 (10%)	0.5	*:	China	60%		USA	15%	*	Myanmar	12%	Other	13%

1. Includes demand for renewables generation, battery storage and electricity transmission/distribution 2. Values in parentheses represent % of total global demand 3. Concrete is another material needed for energy transition infrastructure, but its demand expected to be lower in a net zero world compared to business as usual and therefore not included in this analysis 4. Includes sum of Neodymium (Nd), Dysprosium (Dy), Praseodymium (Pr) and Terbium (Tb) 5. Rare earth element demand in 2050 for clean energy is estimated to be between 10-100k tonnes per year, mid range shown here; Source: USGS, European Commission, IMF, Tesla Masterplan Part III, IEA, Expert interview, BCG analysis

By 2050, land needed for mining energy transition minerals will be far smaller than land stranded from legacy coal mines

Country	Additional land mined for energy transition minerals by 2050 ¹ (sq km)	As % of country's total land area	Land stranded from legacy coal mines by 2050 ² (sq km)	As % of country's total land area
China	-360	<0.01%	7,800	0.41%
la Australia	-250	<0.01%	- 1,800	0.06%
Chile	-120	0.02%	-0	<0.01%
lndonesia	-110	0.01%	5,600	0.30%
🔗 DRC	-100	<0.01%	-0	<0.01%
South Africa	-90	0.01%	1,000	0.20%
📀 Brazil	-70	<0.01%	-0	<0.01%
Russia	-60	<0.01%	- 1,500	0.02%
Philippines	-50	0.02%	-0	<0.01%
🕑 Canada	-50	<0.01%	-0	<0.01%
Peru	40	<0.01%	-0	<0.01%
USA USA	-40	<0.01%	— 1,900	0.05%
India	-40	<0.01%	2,100	0.25%
Kazakhstan	-30	<0.01%	-400	0.04%
Rest of the World	-270		4,000	
Total (Global)	~1,800 (sq km)	-	~26,700 (sq km)	-

1. Includes all demand needed for renewables generation, battery storage and electricity transmission/distribution, assuming the Net Zero Scenario; 2. Assumes >95% reduction in global coal demand to reach net zero; Note: analysis assumes that the proportion of production of metals and minerals for renewables continues to be the same as today; Source: USGS, IMF, Tesla Masterplan Part III, IEA, BCG analysis

By 2050, the total land area that is actively mined will be one-third smaller in a rapid transition scenario due to the decommissioning of mines

Top 10 countries by active mining area in a 2050 rapid transition scenario

Top 10 countries by active mining area in a 2050 BAU scenario

Directional and approximate

Note: active mining area calculated as today's mining area, plus/minus areas projected to be added/stranded based on energy demand shifts in each scenario Sources: Jasansky et al. 2023 "An open database on global coal and metal mine production"; BCG analysis

Even in a rapid transition scenario, countries that are mining hotspots and have substantial protected habitats will require particular support

1. Corresponds to legacy coal mines expected to become stranded in a 2050 Net Zero world; Note: Protected areas for China and India is likely underestimated Source: USGS, IMF; Tesla Masterplan Part III; IEA; The World Bank; Protected Planet (IUCN/WDPA protected habitats database); BCG analysis

Mining can harm water quality through various mechanisms, with acid rock drainage posing the highest risk

Directional; further analysis needed to understand mining water impact attributable to energy transition

Licken siele	Contamination Mechanism:	Mitigation Potential	 Open-pit mining >90% of global metals production ~60-80% of global coal production 	 Underground mining <10% of global metals production ~20-40% of global coal production
Higher risk	Acid rock drainage Oxidation and acidification of mining rocks (especially sulfide minerals) and leaching to water bodies	Low Includes better management of wastewater to limit contact with natural waterways	Larger volumes (due to more rocks being excavated), but lower risk of direct contamination of aquifers	Less volume but higher risk of contact with groundwater sources
	Erosion and sedimentation Residual rocks carry sediments into underground or surface waters	Low Includes better management of sediments to minimize carry-over to waterways	Larger volumes of sediment (due to more rocks being excavated), but lower risk of direct contamination of aquifers	Less volume but higher risk of contact with groundwater sources
	Heavy metal leaching Metals (e.g., arsenic, cobalt and cadmium) contained in excavated rock can come into contact with water bodies	Moderate Open-pit wastewater can be treated for heavy metals; less levers available for underground mining	Impact largely depends on rock composition, overall impact less for open-pits since wastewater can be mostly contained and treated	Less excavation but limited levers to mitigate leaching to aquifers
Lower risk	Processing chemicals Chemicals used in processing ore are leached, leaked, or spilled from the mining area into the nearby bodies of water	High Processing wastewater can be fully contained and treated, especially for open pit mines	Similar impact for both methods Lower water risk	Similar impact for both methods higher water risk

Note: Other methods of mining such as dredging, and in-situ mining are less prevalent Source: DOE; USGS; Safewater.org; BCG analysis

Among mining activities, coal extraction poses the highest water risk globally

A decline in coal mining will most likely reduce global water risk, though the impact is highly localized and difficult to quantify

Calculated total water risk based on WWF water risk filter (2020)

Risk estimates based on proximity of all global active mines (~3170), mapped against high-risk water basins

Demar		Number of	Overall water risk	Water risk category score (1: lowest ; 5:highest)							
Commodity ¹	shift	active mines	(1: lowest ; 5:highest)	Physical	Regulatory	Reputational	Water scarcity	Flooding	Water quality status	Ecosystem services	
Coal	Ţ	1,270	3.3	3.0	2.3	3.7	2.2	3.5	3.5	3.2	
Chromite	1	43	3.3	3.4	2.2	2.8	3.1	3.2	3.4	3.0	
Bauxite (Aluminum)	1	55	3.2	3.0	2.5	3.5	2.3	3.4	3.1	3.0	
Zinc	1	350	3.1	3.0	2.4	3.4	2.3	3.3	3.2	2.8	
Copper	1	405	3.1	2.9	2.5	3.1	2.5	3.1	2.9	2.7	
Iron	1	229	3.1	2.8	2.3	3.5	2.3	3.1	2.9	2.7	
Lithium	1	16	3.0	2.8	2.2	3.6	2.5	2.8	2.4	2.5	
Nickel	1	94	2.9	2.7	2.3	3.2	2.3	3.0	2.7	2.5	
Cobalt	1	72	2.9	2.6	2.5	3.2	2.2	2.9	2.6	2.7	

1. Only commodities relevant to the energy transition shown here, longer list available in the reference study Source: WWF Water Risk Filter Research Series: An analysis of water risk from mining (2020)

Mining analysis method summary:

Material selection:

- Mining analysis in this section was focused on minerals with significant projected shift due to energy transition.
- Minerals with net increase between now and 2050 included iron, graphite, aluminum, copper, lithium, nickel, zinc, silicon, manganese, cobalt, chromium and 4 rare earth elements (Neodymium, Dysprosium, Praseodymium, and Terbium).
- Coal was the only mineral with projected net negative change in our analysis.
- Other minerals that are contributors to global mining area today but were not projected to materially shift as result of energy transition (namely, gold, silver and diamond) were not considered in our assessment.

Land area estimate:

- To calculate the land area shifts, incremental change in total production mass (tonne/year) for each of the minerals above was multiplied by global mining area intensity (sq km/tonne) specific to that mineral in respective country, for each of the future scenarios (rapid transition vs. business as usual).
- To delineate impact on individual countries, it was assumed that the current share of global commodity supply for each country, as well as the mining area intensities, will remain the same between now and 2050.
- To estimate the stranded mining area, it was assumed that~98% of coal production will be halted by 2050 in a rapid transition scenario, and associated coal mines will be proportionally decommissioned in each country (as an example, if a country has 100 acres of active coal mining today, it was assumed that active area is declined to 2 acres by 2050, with the remaining 98 acres stranded as legacy mines).

A6. Energy sources' impact on species

Among energy sources, wind and solar have the lowest impact on species

	Energy source	Impact on species
Lower	Solar	 Bats, birds and insects face habitat changes due to panel shading effects on blooming vegetation Migrating birds mistake reflective surfaces of PV panels for water and collide with hard structures ("lake effect")
impact	Onshore wind	• Birds and bat can collide with turbine blades, resulting in their death, or be electrocuted by distribution lines
	Offshore wind	 Whales, dolphins, sea turtles are exposed to loud noise and can collide with construction vessels Seabirds and migratory birds can collide with turbines
	Biomass	 Freshwater species experience habitat loss from erosion and agricultural run-off due to land-use changes Monocultures reduce biodiversity, increase pest and disease outbreaks, and displace or slow growth rates of vulnerable native species
	Hydro	 Migratory freshwater fish and aquatic species disrupted by dam reservoirs and face spawning interruptions Permanent changes in water and sediment flow block the movement of species up- and downstream and cause riverbed incision and delta shrinking, making them uninhabitable for local species
Higher impact	Fossil fuels	 Fish and animals face habitat destruction and death from explosives-based drilling, seismic noises, and toxic pollutants released into the air and water during operations Contaminated wastewaters containing oil and heavy metals poison trees and have destroyed >130,000ha of mangrove vegetation since 1960s – areas essential for coastal species Catastrophic events such as oil spills cause irreversible damage to habitats (e.g., Deepwater Horizon impacted an estimated 800,000 birds and 26,000 sea mammals; while an oil spill in the Arctic could wipe out the entire bowhead whale population)

The negative impacts of wind and solar on terrestrial and aquatic species can be mitigated using siting and operational strategies

\wedge	

Low impact siting

Place turbines or solar panels away from sensitive areas; use land that has already been degraded Reduce risks of collision and electrocution

Enhance the visibility of turbines, add acoustic deterrents to avert birds and animals, make transmission lines visible with bird flight deflectors or bury lines in the ground Make infrastructure habitable

Design off-shore turbines with artificial reefs, and solar panels with substrates underneath, to support local habitats

Due to climate change, negative impacts on biodiversity are significantly higher with a BAU scenario

 A renewables-heavy global energy system will reduce damage to biodiversity by about 4 times, preventing adverse impacts to about 750,000 species each year About 84% of adverse impacts on habitats in a BAU scenario are driven by climate

- change, while in a rapid transition scenario direct impacts from energy sources play a
- Biomass accounts for most direct energy source impacts under a rapid transition scenario, primarily due to land occupation and

34

A7. Socioeconomic metrics

By 2050, a rapid transition scenario is expected to create about 2.6 times more net jobs

Estimated energy employment by region and sector, 2019 Total of ~68 million employed in the energy industry globally⁴ Million Job-Years created or lost 40M Segments expected to undergo the majority of employment changes as a result of the -24M energy transition Rapid 30M Transition +62M 26M 22M 20M 20M Fossil fuels Nuclear Clean energy 10M 0M Power sector² End uses³ Fuel supply¹ BAU +9M +6M North America Other Asia Pacific Europe Central ans South America Africa Rest of world Clean energy Fossil fuels Nuclear India

Projected change in employment for each scenario by 2050

1. E.g., coal, oil, gas and bioenergy production 2. E.g., generation, transmission and distribution of electricity 3. vehicles manufacturing and energy efficiency for buildings and industry 4. Part time employments converted to full time to allow for aggregation; Source: IEA World Energy Employment Report; Wei et al. "Putting renewables and energy efficiency to work"; BCG analysis

+36M

Net change

(by 2050)

+14M

Net change

(by 2050)

Clean energy jobs pay less than fossil fuel jobs due to lower union representation, compensation for hazards, and skill requirements

Pay by job function is similar across different energy industry segments, but fossil fuels require a larger share of the higher paying functions

...but fossil fuels has a bigger share of higher skilled jobs Share of job functions per energy type (US, 2019)

Graphic by Karin Kirk for Yale Climate Connection Source: Yale Climate Connections; USEER Wage Report (2019) By 2050, internal climate migration is projected to increase the most in impoverished and climate-vulnerable regions across both scenarios

1. Does not include global north in that region (e.g., Japan, South Korea, Australia and New Zealand) 2. Includes 106 countries across World Bank's six regional units, excluding high-income areas (largely, Eur./N. Am.) and Middle East and Small Island Developing States (SIDS); US and Europe are projected to have lower ecological impact as well as higher resilience, hence an overall significantly smaller share of the overall climate migration; Source: World Bank 2021 "Groundswell Part 2: Acting on Internal Climate Migration"; Institute for Economics & Peace 39

By 2030, Sub-Saharan Africa will contain about 90% of the global population without access to electricity

Access to electricity has significantly improved in the past two decades, especially in developing nations in Asia

Access to electricity by region (as % of population)¹

of people without access by 2030 by region What does this mean for access to electricity in the coming decades?

- By 2030, nine out of 10 people without access to electricity will be in Sub-Saharan Africa (SSA)
- Poor access in SSA is primarily due to affordability (e.g., a lack of return on investment for electricity infrastructure projects)
- According to the IEA, accelerating access in the SSA region will require more distributed resources (including mini-grid and off-grid)

1. Regions not shown had >99% access already by year 2000 Source: IEA (energy access outlook special report)

Improving electricity access in Sub-Saharan Africa will mostly require decentralized renewables, driven by lower costs

71% of new access in SSA between now and 2030 will be through renewables, and most of this will be via decentralized solutions (mini-grid and off-grid)

IEA estimates of how people in SSA will gain access to electricity between 2022-2030

42% 31% 27% 18% Renewables 21% 32% (71%) 9% Other 10% 10% (29%) Grid Mini-Grid Standalone (off-grid)

Best–in–class solar PV and wind projects are already cheaper than new gas and coal plants in most parts of SSA, and will be even more competitive by 2030

Note: LCOE = Levelized cost of electricity; CCGT = Combined cycle gas turbine; LCOE represents the average net present cost of electricity generation for a generating plant over its lifetime, including the cost of capital, decommissioning, fuel and CO2 costs, fixed and variable operations and maintenance costs, and financing costs; Source: IEA Africa Energy Outlook ⁴¹

A8. Selected tools & databases to facilitate a nature-positive energy transformation

Tools, databases and frameworks that are useful for mitigating negative impacts on nature from the energy transition

Category	Description	Example
Frameworks	Guidance for structuring overarching nature-related policy, develop nature-based objectives, and lend cohesion to global decision-making	e.g., Nature-Related Risk and Opportunity Management and Disclosure Framework (TNFD)
Siting Tools	Assist in identifying locations with a low impact on nature and a high suitability for clean power generation, including solar and wind	e.g., Site Renewables Right tool (TNC)
Risk/Impact Assessment Tools	To gauge ecosystem, biodiversity, and nature-based impacts from deploying new projects	e.g., Biodiversity Assessment Method (BAM) calculator tool
Energy System Modeling Tools	Analyzers for cost/nature implications of different energy mix choices and project scenarios to aid in investment and decision-making process	e.g., Energy Policy Simulator (RMI)
Biodiversity Databases	Repositories providing data on species distribution and ecological/ conservation needs to support biodiversity aims	e.g., Key biodiversity areas (KBA) (IUCN)

Online tools and databases can be used to mitigate the energy transition's impact on nature (I/VII)

Category	Resource	Provider	Purpose	User(s)	Description
Framework	Kunming-Montreal Global Biodiversity Framework (GBF)	UN CBD	To guide the balanced development and implementation of biodiversity goals/policies	All governments, including subnational and local authorities (e.g., legislators)	 Promotes 4 goals for 2050 and 23 targets for 2030 to achieve vision of nature-harmonious world by 2050 Accompanied by online documentation on monitoring, implementation support, capacity development, and genetic resource agreement
Framework	Science-Based Targets for Nature	SBTN	To provide integrated technical guidance for assessing and prioritizing material nature impacts	Companies from a range of industries (e.g., food and beverage, mining, manufacturing, etc.)	 Outlines 5-step framework and technical tools to identify, measure, track nature impacts in value chain Includes materiality screening tool and data-readiness guide to screen for sector-level environmental issues Additional manuals/documentation available in 2024
Framework	Nature-Related Risk and Opportunity Management and Disclosure Framework	TNFD	To help identify, assess, manage, and disclose nature-related risks and opportunities for nature- positive financial flows	Regulators, companies, investors, ESG data providers, financial institutions, credit rating agencies	 Interactive dashboard to navigate guidance on reporting risks of biodiversity loss and ecosystem degradation Includes LEAP integrated assessment tool to locate, evaluate, assess, and prepare for nature-risk reporting
Framework	Nature's contributions to people (NCP)	IPBES	To identify and assess status of nature's benefits to people and inform policies and stakeholders	Governments, conservation groups, businesses to identify biodiversity risks of projects	 Organizes 18 reporting categories spanning across regulating, material, and non-material NCP Leveraged for inclusion of nature preservation considerations in policy/planning (e.g., low-impact siting)

Online tools and databases can be used to mitigate the energy transition's impact on nature (II/VII)

Category	Resource	Provider	Purpose	User(s)	Description
Siting Tool	RE-Powering Electronic Decision Tool	EPA	To screen identified sites for solar PV and wind installations on current/ formerly contaminated lands, landfills, mine sites	Current renewable energy site operators to assess potential sites and systems	 Presents a series of questions (Yes/No/Skip) to select contaminated sites, landfills, underutilized sites, etc. Screens for site characteristics, redevelopment, energy load, policies, and financial considerations Generates summary report of the screening results
Siting Tool	Site Renewables Right	TNC	To identify solar and wind development sites in central USA with wildlife and natural habitat considerations	Companies, utilities, wind and solar developers, regulators, power purchasers	 Synthesizes >100 layers of engineering, land-use, and wildlife data in ArcGIS Pro Shows areas by color where renewable energy development would avoid wildlife species, natural areas, permitting and cost challenges
Siting Tool	Geospatial Energy Mapper	U.S. DOE	To locate areas with high suitability for clean power generation and potential energy transmission corridors	Developers of utility- scale renewable energy infrastructure	 User selects from >190 layers related to energy infrastructure siting considerations Suitability models identify areas from technology-specific siting criteria
Risk/Impact Assessment Tool	Biodiversity Assessment Method (BAM)	Australia	To apply the BAM methodology to a specific project and see assessment results and estimated offsets required	Project developers subject to the NSW jurisdiction biodiversity offset requirements	 Provides a consistent, regulatory-approved and repeatable output on how the biodiversity impacts need to be offset to ensure NNL outcome Helps users get an estimate of applicable offset credit types and prices

Online tools and databases can be used to mitigate the energy transition's impact on nature (III/VII)

Category	Resource	Provider	Purpose	User(s)	Description
Risk/Impact Assessment Tool	Eco-Logical Tool	U.S. DOT	To assess transportation infrastructure project impact at ecosystem level	State and local authorities and infrastructure project developers	 Organizes current methods for avoidance, minimization, and mitigation into a systematic, step- wise process, beginning with transportation planning and concluding with establishing programmatic approaches to recurring natural resource issues implemented at the project level
Risk/Impact Assessment Tool	Biodiversity Risk Filter	WWF	To assess biodiversity- related risks of operations, value chains, and investments, and utilize findings to respond	Companies from a range of industries (e.g., food and beverage, mining, manufacturing, etc.)	 Presents location-specific and industry-specific assessments of biodiversity across 33 indicators Combines sites' industry materiality rating and local biodiversity importance into a scape risk score (0-5)
Risk/Impact Assessment Tool	Water Risk Filter	WWF	To assess water-related risks of operations, value chains, and investments, and utilize findings to respond	Companies from a range of industries (e.g., food and beverage, mining, manufacturing, etc.)	 Presents location-specific and industry-specific assessments of basin risks and operational risks, with maps, graphics, and tables to interpret results Separates risk by risk type, risk category, and indicator
Risk/Impact Assessment Tool	Exploring Natural Capital Opportunities, Risks and Exposure (ENCORE)	UNEP, NFCA	To understand nature's economic impacts and integrate natural capital risks into decision-making processes	Financial institutions and regulators	 Highlights impacts and dependencies on natural capital based on user inputs of sector, sub-industry, and production processes Maps and dashboards used to align portfolios with biodiversity goals and features natural capital hotspots

Online tools and databases can be used to mitigate the energy transition's impact on nature (IV/VII)

Category	Resource	Provider	Purpose	User(s)	Description
Risk/Impact Assessment Tool	Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST)	Natural Capital Project	To map and value nature- based goods and services and illustrate ecosystem flows for human benefit	Governments, conservation groups, lending institutions, corporations	 Suite of open-source software models that map spatial data, including for supporting/final services, tools to facilitate ecosystem service analyses, supporting tools Uses production function to quantify and value ecosystem services (e.g., land and water impacts based on changing ecosystem service outputs)
Energy System Modeling Tool	Switch Power System Planning Model	UC Berkeley	To optimize investment decisions for generation and transmission assets, EVs and storage and explore system performance scenarios	Policymakers or power system owners that expect to have large shares of renewable energy or storage, regulators	 Capacity planning model in a Python package where users add modules into model that reflect power system aspects Users can adjust timescales, financials, energy and serve constraints to optimize for long-term renewable transition based on hour-by-hour uses of resources
Energy System Modeling Tool	Engage Energy Modeling Tool	NREL	To enable cross-sectoral energy system planning and simulation via models	Governments, including subnational and local authorities, and infrastructure project developers	 Model simulations of energy systems with high variable/other generation and storage and provides visualizations to understand interdependencies Used to plan electricity generation/transmission assets and analyze land/cost/infrastructure implications
Energy System Modeling Tool	Energy Policy Simulator	RMI	To estimate the environmental, economic, and human health impacts of climate and energy policies	Policymakers, regulators, advocates, researchers	 Users control for a variety of policy scenarios relevant to main economic sectors at state level Provides outputs such as air quality impacts, costs/savings, impacts on job/GDP, electric capacity requirements and import/export implications

Online tools and databases can be used to mitigate the energy transition's impact on nature (V/VII)

Category	Resource	Provider	Purpose	User(s)	Description
Energy System Modeling Tool	National Energy Modeling System	EIA	To project technological and policy scenarios on the power sector's production/consumption to inform decision-making	Power market system operators, policymakers, regulators	 Capacity planning model for the power sector with modules, executes iteratively until a supply-demand equilibrium is achieved. Supply/demand module: solves for cost-min./utility- max. levels of investment and operation Variable renewable energy and storage (VRE) module: calculates value of VRE generators/storage
Biodiversity database	Key Biodiversity Areas (KBA)	IUCN	To identify areas (KBAs) that contribute to the global persistence of biodiversity and drive protection efforts	Governments, conservation groups, private sector (range of industries)	 Identifies global KBAs if at least 1 of 11 criteria are met, themed by threatened, geographically restricted, ecological integrity, biological processes, irreplaceability Organizes results in map, with categorized habitats and threats. Users can toggle between filters to refine search
Biodiversity database	World Database on Protected Areas (WDPA)	WDPA, UN, IUCN	To showcase global terrestrial and marine protected areas in a consolidated database	Governments, conservation groups, businesses to identify biodiversity risks of projects	 Maps ~250,000 protected terrestrial, inland waters, and marine protected areas across ~250 countries Evaluates protected areas as a % of total land or coastal area, and identifies conservation measures in place

Online tools and databases can be used to mitigate the energy transition's impact on nature (VI/VII)

Category	Resource	Provider	Purpose	User(s)	Description
Biodiversity database	Red List of Threatened Species	IUCN	To assess levels of risks facing threatened species and support decisions and conservation actions	Governments, conservation groups, private sector (range of industries)	 Assesses risks to more than 150,300 species and provides up-to-date data on world biodiversity health Divides species into nine categories: Not Evaluated, Data Deficient, Least Concern, Near Threatened, Vulnerable, Endangered, Critically Endangered, Extinct in the Wild, and Extinct
Biodiversity database	Red List of Ecosystems	IUCN	To assess spatial and functional risks to ecosystems and support conservation efforts	Governments, conservation groups, private sector (range of industries)	 Assesses risk of ecosystem collapse for >4,000 ecosystems through five criteria, and places them into right possible categories of risk. These range from least concern, to endangered, to collapsed Users toggle between filters including regions, threats, typology, red list categories
Biodiversity database	Global Ecosystem Typology	IUCN	To identify high-priority ecosystems critical to biodiversity and conservation efforts	Governments, conservation groups, private sector (range of industries)	 Provides in-depth information on 4 core realms and 6 transitional realms, classifying ecosystems according to functional characteristics (e.g., structural roles) Map tool allows for regional and local analysis of ecosystem functional groups with realm/biome filters
Biodiversity database	Critical Natural Assets Map	Chaplin- Kramer et al. 2022	To visualize global locations of critical natural assets (i.e., ecosystems providing 14 NCP types)	Governments, conservation groups, private sector (range of industries)	 Published paper and code outputs/underlying data (in R) on mapping critical natural assets, which provide 90% of total magnitude of 14 NCP at 2-km resolution Informs on overlap with regions of biodiversity and cultural diversity, including population share benefited

Online tools and databases can be used to mitigate the energy transition's impact on nature (VII/VII)

Category	Resource	Provider	Purpose	User(s)	Description
Biodiversity database	Global Wetlands Map	SWAMP	To geospatially visualize wetlands in tropics and subtropics regions to support impact mitigation	Governments, conservation groups, private sector (range of industries)	 Interactive, web-based map displaying varieties of wetlands at sub-national levels, with GeoTIFF datasets available for download for external analyses Employs a hydro-geomorphological model to estimate wetland areas based on long-term water supply, seasonal waterlogged soils, and geographic positions
Biodiversity database	Global Biodiversity Model for Policy Support (GLOBIO)	PBL Nether- lands	To quantify global human impacts/interactions with biodiversity and inform policymakers	Policymakers, regulators, advocates, researchers	 GLOBIO4 models terrestrial, aquatic, species, and ecosystem services intactness as a function of human actions (e.g., land use and climate change), with maps that correlate human pressures and nature impacts Mean species abundance (MSA) metric is used to measure local biodiversity intactness, ranging from 0 (locally extinct) to 1 (fully intact)
Biodiversity database	Integrated Biodiversity Assessment Tool (IBAT)	IBAT Alliance	To provide integrated access to critical biodiversity information and inform risk assessment and policymaking processes	Governments, conservation groups, private sector (range of industries)	 "One-stop shop" platform for biodiversity data search, with simple reporting templates and functionalities Hosts and maintains 3 key global biodiversity dataset: Red List of Threatened Species, WDPA, and KBA and STAR Metric to enable informed decisions in policy and implementation measures for both public and private sector interests

